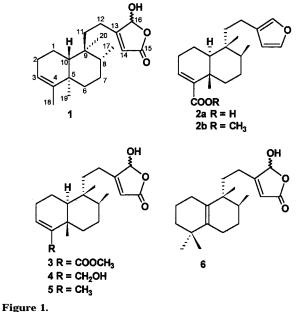
Synthesis of 16,18-Dihydroxycleroda-3,13Z-dien-16,15-olide, (+)-16-Hydroxycleroda-3,13Z-dien-16,15-olide, and (-)-Hydroxyhalima-5(10),13-dien-16,15-olide from (+)-Hardwickiic Acid

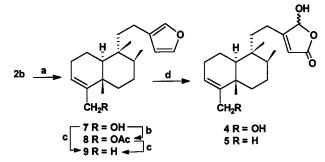
Paulo M. Imamura*,[†] and Marta Costa,^{‡,1}

Instituto de Química, Universidade Estadual de Campinas, C.P. 6154, CEP 13083-970, Campinas, São Paulo, Brazil, and Departamento de Química, UFMS, MS, Brazil


Received February 29, 2000

Syntheses of three enantiomers of natural hydroxybutenolide diterpenes, 16,18-dihydroxycleroda-3,13*Z*-dien-16,15-olide (**4**), (+)-16-hydroxycleroda-3,13*Z*-dien-16,15-olide (**5**), and (-)-16-hydroxyhalima-5(10),-13*Z*-dien-16,15-olide (**6**), via a furan photosensitized oxygenation reaction of (+)-hardwickiic acid (**2**), are described.

The occurrence of natural clerodane hydroxybutenolides such as **1** (Figure 1) has been reported frequently in plants of the genera Polyalthia,²⁻¹¹ Acritopappus,¹² Premna,¹³ and *Cyathocalyx*.¹⁴ It is interesting to note that many species of these genera are widely used in folk medicine as diuretics,¹⁵ febrifuges,⁴ and chewing sticks, and for sterilizing milk containers.¹³ It is also noteworthy that some natural clerodane hydroxybutenolides show significant biological activities as antifeedants² and antimicrobials,^{6,13} cytotoxicity to tumor cell cultures,^{3,10} and toxicity against Artemia salina^{3,14} and Aedes aegypti.¹⁴ Recently, we described the isolation of two clerodane hydroxybutenolides from Echinodorus grandiflorus [Cham. & Schltdl.] Micheli (Alismataceae) and the synthesis of an enantiomer of one of them from (+)-hardwickiic acid (2a).¹⁵ Although there are many reports in the literature for the synthesis of clerodane diterpenoids, only a few report the synthesis of clerodane hydroxybutenolides such as 1^{16,17} and 3.¹⁵ Thus, in connection with our studies regarding the use of resin acids as chiral starting materials for the synthesis of natural products,¹⁸⁻²⁰ and in view of the potential biological activities of natural hydroxybutenolides, we have synthesized clerodanes 4 and 5 and halimane 6, with absolute configurations enantiomeric²¹ to those of the natural products, from the readily available methyl (+)-hardwickiate (**2b**),^{15,22} in order to facilitate comparisons of biological activities.

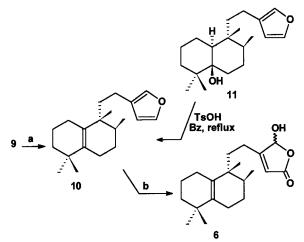

Results and Discussion

Reduction of (+)-methyl hardwickiate (**2b**) with lithium aluminum hydride furnished a mixture (3:1) of the desired compound **7** and the corresponding Δ^3 -dihydro compound, which are difficult to separate. However, reduction of **2b** with diisobutylaluminum hydride (DIBAL) furnished the desired alcohol **7** in 98% yield (Scheme 1). The next step for the synthesis of the hydroxybutenolide moiety from the furan ring was based on a photosensitized oxygenation procedure reported by Kernan and Faulkner.²³ Thus, reaction of **7** in CH₂Cl₂ at -78 °C with oxygen in the presence of Rose Bengal and diisopropylethylamine (DI-PEA) furnished **4**, a diastereoisomer of a compound reported by Faulkner.²³ in 75% yield.

0

Scheme 1^a

^a Key: (a) DIBAL, toluene, -78 °C (98%); (b) Ac₂O, Py, rt, (85%); (c) nickel-boride, diglyme, 0 °C (73% from 7 and 75% from 8); (d) O₂, Rose Bengal, DIPEA, CH₂Cl₂, -78 °C, (75% for 4 and 72% for 5).


Reductive elimination of the hydroxyl group in 7 to yield **9** proved troublesome. Treatment of 7 with methanesulfonyl chloride led to a complex mixture of products, among which the desired mesylate and the corresponding chlorinated compound were tentatively identified. To circumvent this problem, Sharma's protocol²⁴ of transforming an allylic alcohol directly to the corresponding hydrocarbon was applied. Thus, treatment of **7** with nickel boride, generated

10.1021/np000105f CCC: \$19.00 © 2000 American Chemical Society and American Society of Pharmacognosy Published on Web 11/01/2000

 $[\]ast$ To whom correspondence should be addressed. E-mail: imam@iqm.unicamp.br.

[†] Universidade Estadual de Campinas.

[‡] Universidade Federal de Mato Grosso do Sul (UFMS).

 a Key: (a) HCl–HOAc (1:4), 60 °C (85%); (b) O2, Rose Bengal, DIPEA, $CH_2Cl_2,\ -78$ °C, (90%).

in situ, gave **9** as a single product in 73% yield. Treatment of the acetate **8** with nickel boride also led to the desired compound **9** in 75% yield. Following the same procedure described above for **7**, photosensitized oxygenation of **9** gave **5** in 72% yield. Physical and spectroscopic data of the synthetic product were in good agreement with those reported for the natural product,^{2–13} except for the expected difference in the optical rotation, which was $[\alpha]_D$ +30.0 (*c* 1.7, CHCl₃) {lit.⁷ $[\alpha]_D$ – 48.7° (*c* 3.02, CHCl₃)}.

Compound **10**, required for the synthesis of **6**, was obtained in 85% yield through acid-catalyzed rearrangement of **9** using acetic acid and hydrochloric acid at 60 °C (Scheme 2). Spectroscopic data of **10** were in good agreement with those reported in the literature for dehydroambliol-B, a dehydration product obtained from the marine diterpene ambliol-B (**11**) by treatment with p-TsOH in benzene.^{25,26}

Finally, photosensitized oxygenation of **10** furnished the desired compound **6** in 90% yield. Spectroscopic data of **6** were also in good agreement with those reported in the literature for the enantiomer, except for the expected difference in the optical rotation, which was $[\alpha]_D - 35.4^{\circ}$ (*c* 0,24, CHCl₃) {lit.⁵ $[\alpha]_D + 21.0^{\circ}$ (*c* 0.54, CHCl₃)}.

Compounds **3**, **5**, and **6** were evaluated for antitubercular activity. Only **5** showed significant activity according to the TAACF protocol (12.5 μ g mL⁻¹), with 85% inhibition of *Mycobacterium tuberculosis*.²⁷

Experimental Section

General Experimental Procedures. ¹H and ¹³C NMR spectra were recorded in CDCl₃ solution at 300 and 75 MHz, respectively, with a Bruker AC 300/P spectrometer (internal standard TMS). IR spectra were recorded on a Perkin-Elmer 1600 series FT IR. MS spectra were obtained at 70 eV on an HP-5990/5970 system equipped with a J&W Scientific DB-5 fused silica capillary column (30 m × 0.25 mm × 0.25 μ m). Elemental analyses were performed with a Perkin-Elmer CHN analyzer. Optical rotations were measured with a Carl Zeiss photoelectric polarimeter.

{(4a α ,6 β ,8a β)-1-Hydroxymethyl-5(*R*)-[2-(3-furanyl)ethyl]-5,6,8a-trimethyl-3,4, 4a,5,6,7,8,8a-octahydronaphthalene} (7). A 1.0 M solution of DIBAL (3.7 mL, 3.7 mmol) was added to a stirred solution of **2b** (558 mg, 1.7 mmol) in dry toluene (20 mL), at -78 °C, and the reaction mixture was warmed to 0 °C and stirred for 2 h. Saturated aqueous ammonium chloride (8 mL) was added, and the reaction mixture was extracted with ethyl ether (3 × 30 mL), washed with brine, and dried over anhydrous magnesium sulfate. The solvent was removed under reduced pressure, and the residue was chromatographed on silica gel (petroleum ether-ethyl acetate; 9:1) to give **7** (500 mg; 98%) as a colorless oil: $[\alpha]^{23}_{D}$ +18.3 (CHCl₃, c 1.49); IR (neat) v_{max} 3422, 2926, 2867, 1654, 1639, 1458, 1383, 1264, 1024, 873, 739 cm $^{-1};\,^1\!\mathrm{H}$ NMR (CDCl_3, 300 MHz) δ 0.75 (3H, s, H-20), 0.83 (3H, d, J = 6.4 Hz, H-17), 1.08 (3H, s, H-19), 1.20-1.80 (11H, m), 2.00-2.40 (4H, m), 4.10 (2H, d, J = 1.5Hz, H-18), 5.57 (1H, t, J = 1.7 Hz, H-3), 6.26 (1H, t, J = 1.0Hz, H-14), 7.20 (1H, bs, H-16), 7.35 (1H, t, J = 1.7 Hz, H-15); ¹³C NMR (CDCl₃, 75 MHz) δ 148.2 (s, C-4), 142.9 (d, C-15), 138.6 (d, C-16), 125.9 (s, C-13), 122.3 (d, C-3), 111.2 (d, C-14), 63.1 (t, C-18), 46.4 (d, C-10), 38.8 (s, C-9), 38.6 (t, C-11), 37.5 (s, C-5), 36.4 (t, C-6), 36.3 (d, C-8), 27.3 (t, C-7), 26.6 (t, C-2), 21.4 (q, C-19), 18.3 (q, C-20), 18.2 (t, C-1), 18.2 (t, C-12), 16.0 (q, C-17); MS (m/z, %) (M+) 302(16), 271(16), 189(50), 94(58), 81(100), 41(70); anal. C 79.29%, H 9.74%, calcd for C₂₀H₃₀O₂, C 79.42%, H 9.99%.

{(4aα,6β,8aβ)-1-Acetoxymethyl-5(*R*)-[2-(3-furanyl)ethyl]-5,6,8a-trimethyl-3,4, 4a,5,6,7,8,8a-octahydronaphthalene} (8). Acetic anhydride (0.1 mL, 0.6 mmol) was added to a solution of 7 (75 mg, 0.2 mmol) in dry pyridine (1 mL), and the mixture was stirred overnight at room temperature. Cold water (10 mL) was added, and the reaction mixture was extracted with ethyl ether (3 \times 30 mL). The organic phase was washed with 5% HCl (2 \times 10 mL) and then with brine until pH 7.0 and dried over anhydrous sodium sulfate. After removal of solvent under reduced pressure and purification of the residue by column chromatography (silica gel, n-hexane), compound **8** (72 mg, 85%) was obtained as a colorless oil. $[\alpha]^{23}_{D}$ +26.3 (CHCl₃, c 1.94); IR (neat) v_{max} 2925, 2856, 1740, 1450, 1384, 1239, 1026, 873, 780; ¹H NMR (CDCl₃, 300 MHz) δ 0.75 (3H, s, H-20), 0.83 (3H, d, J=6.5 Hz, H-17), 1.08 (3H, s, H-19), 1.30-1.80 (10H, m), 1.98-2.40 (4H, m), 2.07 (3H, s, OAc), 4.53 (2H, t, J = 2.7 Hz, H-18), 5.60 (1H, t, J = 3.5 Hz, H-3), 6.26 (1H, d, J=1.8 Hz, H-16), 7.20 (1H, bs, H-14), 7.34 (1H, t, J= 1.6 Hz, H-15); ¹³C NMR (CDCl₃, 75 MHz) δ 171.3 (s, C=O), 142.9 (s, C-4), 142.9 (d, C-15), 138.6 (d, C-16), 126.2 (d, C-3), 125.9 (s, C-13), 111.2 (d, C-14), 65.1 (t, C-18), 46.3 (d, C-10), 38.8 (s, C-9), 38.6 (t, C-11), 37.9 (s, C-5), 36.3 (d, C-8), 36.2 (t, C-6), 27.2 (t, C-7), 26.7 (t, C-2), 21.3 (q, C-19), 21.2 (q, H₃C-CO), 18.2 (t, C-1), 18.2 (t, C-12), 18.1 (q, C-20), 16.0 (q, C-17); anal. C 76.56%, H 9.14%, calcd for C₂₂H₃₂O₃, C 76.70%, H 9.36%

 $(4a\alpha, 6\beta, 8a\beta) - 5(R) - [2 - (3 - Furanyl)ethyl] - 1, 5, 6, 8a - tetra$ methyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene} (9). Anhydrous nickel chloride (622 mg, 4.8 mmol) and sodium borohydride (363 mg, 9.6 mmol) were added to a solution of 7 (104 mg, 0.3 mmol) in diglyme (15 mL) at 0 °C, whereupon a black precipitate formed. The mixture was stirred for 6 h, then diluted with dichloromethane (20 mL), and filtered through a pad of Celite, and the solvent was removed under reduced pressure. The residue was chromatographed on silica gel (nhexane–ethyl ether; 95:5) to give 9 (72 mg, 73%) as a colorless oil. $[\alpha]^{23}_{D}$ +21.3 (CHCl₃, *c* 2.64); IR (neat) ν_{max} 2925, 2866, 1458, 1382, 1160, 1025, 872, 778 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.73 (3H, s, H-20), 0.83 (3H, d, J = 6.3 Hz, H-17), 0.99 (3H, s, H-19), 1.10-1.90 (10H, m), 1.56 (3H, d, J = 1.6 Hz, H-18), 2.00-2.40 (4H, m), 5.11 (1H, bs, H-3), 6.14 (1H, s, H-16), 7.10 (1H, bs, H-14), 7.24 (1H, t, J = 1.5 Hz, H-15); ¹³C NMR (CDCl₃, 75 MHz) & 143.7 (s, C-4), 142.3 (d, C-15), 138.0 (d, C-16), 125.2 (s, C-13), 120.6 (d, C-3), 110.7 (d, C-14), 46.1 (d, C-10), 38.5 (t, C-11), 38.4 (s, C-9), 37.9 (s, C-5), 36.6 (t, C-6), 36.2 (d, C-8), 27.4 (t, C-7), 26.7 (t, C-2), 19.8 (q, C-19), 18.2 (t, C-1), 18.2 (t, C-12), 18.2 (q, C-20), 17.9 (q, C-18), 16.1 (q, C-17); MS (m/z, %) (M+) 286(30), 271(35), 191(60), 107(62), 95(100), 81(80), 41(70); anal. C 83.57%, H 10.73%, calcd for C₂₀H₃₀O, C 83.86%, H 10.56%.

{(4a α ,6 β ,8a β)-1-Hydroxymethyl-5(*R*)-[2-(2,5-dihydro-5hydroxy-2-oxo-4-furanyl)ethyl]-5,6,8a-trimethyl-3,4,-4a,5,6,7,8,8a-octahydronaphthalene} (4). Oxygen was bubbled through a solution of 7 (80 mg, 0.3 mmol) in CH₂Cl₂ (20 mL), diisopropylamine (0.4 mL), and Rose Bengal on polystyrene (3 mg) and irradiated with a tungsten lamp (250 W) at -78 °C for 6 h. The reaction mixture was filtered through a pad of Celite, and the residue was purified by silica

gel column chromatography (CHCl3-MeOH; 99:1) to give 4 (66 mg, 75%) as an oil: IR (neat) ν_{max} 3372, 2926, 1756, 1648, 1458, 1129, 737 cm $^{-1}$; 1H NMR (CDCl₃, 300 MHz) δ 0.78 (3H, s, H-20), 0.81 (3H, d, J = 6.0 Hz, H-17), 1.08 (3H, s, H-19), 1.20-2.50 (15H, m), 4.10 (2H, s, H-18), 4.55 (1H, br, OH), 5.57 (1H, s, H-3), 5.84 (1H, s, H-14), 6.00 (1H, s, H-16); ¹³C NMR (CDCl₃, 75 MHz) & 171.5 (s, C-15), 170.4 (s, C-13), 142.3 (s, C-4), 136.8 (d, C-3), 117.0 (d, C-14), 99.1 (d, C-16), 63.1 (t, C-18), 46.5 (d, C-10), 38.7 (s, C-9), 37.5 (s, C-5), 36.3 (d, C-8), 35.7 (t, C-6), 34.8 (t, C-11), 27.1 (t, C-7), 27.0 (t, C-2), 21.2 (t, C-12), 20.6 (q, C-19), 18.1 (q, C-20), 17.4 (q, C-1), 15.9 (C-17); anal. C 71.59%, H 9.14%, calcd for C₂₀H₃₀O₄, C 71.82%, H, 9.04%.

{(4aα,6β,8aβ)-5(R)-[2-(2,5-Dihydro-5-hydroxy-2-oxo-4furanyl)ethyl]-1,5,6,8a-tetramethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene} (5). Using the same procedure as described above for 7, reaction of 9 (30 mg, 0.1 mmol) furnished hydroxybutenolide 5 (24 mg, 72%) as an oil: $[\alpha]^{23}_{D}$ +30.0 (c 1.7, CHCl₃); IR (neat) $\nu_{\rm max}$ 3336, 2956, 1759, 1737, 1647, 1448, 1130, 953, 738 cm^-1; ¹H NMR (CDCl₃, 300 MHz) δ 0.72–0.98 (2H, m), 0.77 (3H, s, H-20), 0.81 (3H, d, J = 6.0 Hz, H-17), 1.01 (3H, s, H-19), 1.10–1.84 (9H, m), 1.58 (3H, d, J=1.5 Hz, H-18), 1.90-2.40 (3H, m), 4.58 (1H, br, OH), 5.19 (1H, s, H-3), 5.84 (1H, s, H-14), 6.01 (1H, s, H-16); ¹³C NMR (CDCl₃, 75 MHz) & 171.6 (s, C-15), 170.4 (s, C-13), 144.4 (s, C-4), 122.4 (d, C-3), 117.0 (d, C14), 99.1 (d, C-16), 46.5 (d, C-10), 38.7 (s, C-9), 38.7 (s, C-5), 38.2 (t, C-6), 36.7 (d, C-8), 34.8 (t, C-11), 27.4 (t, C-7), 26.5 (t, C-2), 21.4 (t, C-12), 19.9 (q, C-19), 18.3 (t, C-1), 18.2 (q, C-17), 18.0 (q, C-18), 16.0 (q, C-20); MS (m/z, %) (M+) 318(25), 275(70), 191(80), 149(70), 123(100), 107(98), 41-(96); anal. C 75.29%, H 9.44%, calcd for C₂₀H₃₀O₃, C 75.43%, H, 9.50%.

 $(6\beta)-5(R)-[2-(3-Furanyl)ethyl]-1,1,5,6-tetramethyl-$ 1,2,3,4,5,6,7,8-octahydronaphthalene} (10). A solution of 9 (35 mg, 0.1 mmol) in acetic acid (0.4 mL) and concentrated hydrochloric acid (0.1 mL) was heated at 60 °C. After stirring for 12 h, water (5 mL) was added and the mixture was extracted with ethyl acetate (3 \times 30 mL). The organic layer was washed with brine and dried over anhydrous sodium sulfate. After removal of solvent under reduced pressure and purification of the residue by column chromatography (silica gel, n-hexane), compound 10 (30 mg, 85%) was obtained as a colorless oil: [α]²³_D –26.0 (CHCl₃, *c* 1.47); IR (film) 2956, 1495, 1452, 1363, 1028, 730 cm $^{-1}$; ¹H NMR (CDCl₃, 300 MHz) δ 0.83 (3H, s, H-20), 0.87 (3H, d, J = 6.9 Hz, H-17), 0.98 (3H, s, H-18), 0.99 (3H, s, H-19), 1.10-1.90 (11H, m), 2.00-2.40 (4H, m), 6.13 (1H, bs, H-14), 7.09 (1H, bs, H-16), 7.23 (1H, bs, H-15); ¹³C NMR (CDCl₃, 75 MHz,) & 142.9 (d, C-15), 138.8 (s, C-5), 137.5 (d, C-16), 132.8 (s, C-10), 126.1 (s, C-13), 111.3 (d, C-14), 40.9 (s, C-9), 40.3 (t, C-3), 36.8 (t, C-11), 34.7 (s, C-4), 33.8 (d, C-8), 29.4 (q, C-18), 27.8 (q, C-19), 27.5 (t, C-7), 26.2 (t, C-6), 25.6 (t, C-1), 21.2 (q, C-20), 20.3 (t, C-12), 19.9 (t, C-2), 16.3 (q, C-17); anal. C 83.69%, H 10.34%, calcd for C20H30O, C 83.86%, H 10.56%

{(6β)-5(R)-[2-(2,5-Dihydro-5-hydroxy-2-oxo-4-furanyl)ethyl]-1,1,5,6-tetramethyl-1,2,3,4,5,6,7,8-octahydronaphthalene} (6). Using the same procedure as described for 7, reaction of 10 (30 mg, 0.1 mmol) furnished hydroxybutenolide **6** (30 mg, 90%) as an oil: $[\alpha]^{23}_{D}$ –35.4 (CHCl₃, *c* 0.24); IR (film) 3386, 2944, 1753, 1648, 1256, 1128, 738 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.86 (3H, d, J = 6.6 Hz, H-17), 0.87 (3H, s, H-20), 0.97 (3H, s, H-18), 0.99 (3H, s, H-19), 1.10-2.50 (15H, m), 4.25 (1H, bs, OH), 5.84 (1H, s, H-14), 6.00 (1H, bs, H-16); ¹³C NMR (CDCl₃, 75 MHz) & 171.3 (s, C-15), 170.6 (s, C-13), 138.5 (s, C-5), 131.3 (s, C-10), 117.0 (d, C-14), 98.9 (d, C-16), 40.7 (s, C-9), 39.8 (t, C-3), 34.6 (s, C-4), 33.7 (d, C-8), 32.8 (t, C-11), 29.2 (q, C-18), 27.6 (q, C-19), 27.1 (t, C-7), 25.7 (t, C-6), 25.3 (t, C-1), 22.7 (t, C-12), 20.9 (q, C-20), 19.9 (t, C-2), 16.2 (q, C-17); anal. C 75.22%, H 9.24%, calcd for C₂₀H₃₀O₃, C 75.43%, H 9.50%.

Acknowledgment. We thank Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial assistance, and M.C. thanks CAPES/PICD for a fellowship. We also thank Dr. J. A. Maddry at TAACF for tuberculosis antimicrobial testing and Prof. L. H. B. Baptistella for helpful discussions.

References and Notes

- (1) New address: M. Costa, Departamento de Química, UFRN, RN, Brazil.
- (2) Phadnis, A. P.; Patwardhan, S. A.; Dhaneshwar, N. N.; Tavale, S. S.; Row: T. N. G. *Phytochemistry* **1988**, *27*, 2899–2901. (3) Zhao, G.; Jung, J. H.; Smith, D. L.; Wood, K. V.; McLaughlin, J. L.
- Planta Med. 1991, 57, 380-383.
- (4) Chakrabarty, M.; Nath, A. C. J. Nat. Prod. 1992, 55, 256-258. Hara, N.; Asaki, H.; Fujimoto, Y.; Gupta, Y. K.; Siongh, A. K.; Sahai, (5)
- (6) Rashid, M. A.; Hossain, M. A;, Hasan, C. M.; Reza, M. S. *Phytothere*.
 (6) Rashid, M. A.; Hossain, M. A;, Hasan, C. M.; Reza, M. S. *Phytother*.
- Res. 1996, 10, 79-81. (7)Kijjoa, A.; Pinto, M. M. M.; Herz, W. Planta Med. 1989, 55, 205-
- 206Kijjoa, A.; Pinto, M. M. M.; Pinho, P. M. M.; Tantisewie, B.; Herz, W. *Phytochemistry* **1990**, *29*, 653–655. (8)
- (9) Kijjoa, A.; Pinto, M. M. M.; Pinho, M. M.; Herz, W. Phytochemistry **1993**, *34*, 457–460.
- (10)Ma, X.; Lee, I.-S.; Chai, H.-B.; Farnsworth, N. R.; Soejarto, D. D.; Cordel, G. A.; Pezzuto, J. M.; Kinghorn, A. D. Phytochemistry 1994, 37, 1659-1662.
- (11) Hao, X.-J.; Yang, X.-S.; Zhang, Z.; Shang, L.-J. *Phytochemistry* **1995**, 39, 447–448.
- (12) Bohlman, F.; Jakupovic, A. J.; King, R. M.; Robinson, H. Rev. Latinoam. Quim. 1984, 15, 16.
- (13) Habtemariam, S.; Gray, A. I.; Waterman, P. G. Planta Med. 1992, 58, 109-110. (14) Wijerathne, E. M. K.; da Silva, L. B.; Tezuka, Y.; Kikuchi, T.
- Phytochemistry 1995, 39, 443-445. (15) Costa, M.; Tanaka, C. M. A.; Imamura, P. M.; Marsaioli, A. J.
- Phytochemistry 1999, 50, 117-122. (16) Hagikawa, H.; Inome, K.; Uda, H. J. Chem. Soc., Perkin Trans. 1 1995, 757–764.
- (17) For a similar synthesis of a sesterterpenic hydroxybutenolide see: Piers, E.; Wai, J. S. M. *Can. J. Chem.* **1994**, *72*, 146–157.
 (18) Pantarotto, H.; Imamura, P. M. *Liebigs Ann.* **1995**, 1891–1894.
- (19) Nunes, F. M. N.; Imamura, P. M. J. Braz. Chem. Soc. 1996, 7, 181-186.
- (20) Santos, C.; Rosso, C. R. S.; Imamura, P. M. Synth. Commun. 1999, 29, 1903–1910.
- (21) Since 2a was the starting material, the configurations of the synthetic compounds 5 and 6 are enantiomeric to those of the natural hydroxybutenolides
- (22)Čosta, M.; Fujiwara, F. Y.; Imamura, P. M. Magn. Reson. Chem. 1998, 36.542 - 544
- (23) Kernan, M. R.; Faulkner, D. J. J. Org. Chem. 1988, 53, 2773–2776.
 (24) Sarma, D. N.; Sharma R. P. Tetrahedron Lett. 1985, 26, 2581–2584.
- (25) Walker R. P.; Faulkner, D. J. J. Org. Chem. 1981, 46, 1098–1102.
 (26) Rosser, R. M.; Faulkner, D. J. J.; Bass, L. S.; Cun-Heng, H.; Clardy, J.
- J. Org. Chem. 1984, 49, 5160-5163. (27) Tuberculosis antimicrobial testing was performed at TAACF, Southern Research Institute, Birmingham, AL.

NP000105F